Further developements in finite fibonomial calculus

نویسنده

  • Ewa Krot
چکیده

Finite Fibonomial Operator Calculus (FFOC) is a special case of Extented Finite Operator Calculus (FOC). The ”Calculus of Sequences” was started by Ward in 1936 [1] and considered by many authors after him. The very foundations of FOC were given by O.V.Viskov, G. Markowsky and finally by the author of [8, 2, 3] . The idea of FFOC due to A.K.Kwaśniewski [2] (see Example 2.1) is now continued [4] by the present author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Introduction to Finite Fibonomial Calculus

This is an indicatory presentation of main definitions and theorems of Fibonomial Calculus which is a special case of ψ-extented Rota’s finite operator calculus [7]. 1 Fibonomial coefficients The famous Fibonacci sequence{Fn}n≥0

متن کامل

On $\psi$-basic bernoulli-wardian polynomials

The Ward solution of ψ-difference calculus nonhomogeneous equation ∆ ψ f = ϕ ϕ =? is found in the form of f (x) = n≥1 B n n ψ ! ϕ (n−1) (x) + ψ ϕ(x) + p(x) (where B n denote ψ-Bernoulli-Ward numbers [1])-in the framework of the ψ-Finite Operator Calculus [2]-[5]. Specifications to q-calculus case and the new Fibonomial calculus case [5, 6] are made explicit. At first let us anticipate with ψ-re...

متن کامل

Information on some recent applications of umbral extensions to discrete mathematics

At the first part of our communicate we show how specific umbral extensions of the Stirling numbers of the second kind result in new type of Dobinski-like formulas. In the second part among others one recovers how and why Morgan Ward solution of uncountable family of ψ-difference calculus nonhomogeneous equations ∆ ψ f = ϕ in the form f (x) = n≥1 B n n ψ ! ϕ (n−1) (x) + ψ ϕ(x) + p(x) extends to...

متن کامل

N ov 2 00 4 Information on some recent applications of umbral extensions to discrete mathematics

At the first part of our communicate we show how specific umbral extensions of the Stirling numbers of the second kind result in new type of Dobinski-like formulas. In the second part among others one recovers how and why Morgan Ward solution of uncountable family of ψ-difference calculus nonhomogeneous equations ∆ ψ f = ϕ in the form f (x) = n≥1 B n n ψ ! ϕ (n−1) (x) + ψ ϕ(x) + p(x) extends to...

متن کامل

$\psi$-Appell polynomials` solutions of an umbral difference nonhomogeneous equation

One discovers why Morgan Ward solution [1] of ψ-difference calculus nonhomogeneous equation ∆ ψ f = ϕ in the form f (x) = n≥1 B n n ψ ! ϕ (n−1) (x) + ψ ϕ(x) + p(x) recently proposed by the present author (see-below)-extends here now to ψ-Appell polynomials case-almost automatically. The reason for that is just proper framework i.e. that of the ψ-Extended Finite Operator Calculus(EFOC) recently ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004